I ran through Einstein's second transformed equation in II. 6 and got almost what he had, save that I swapped zeta and xi somewhere, as you will see. Either I made a mistake or Einstein did (give you one guess which is more likely!). Anyhow here it is.
To simplify it a little I set $\mathrm{c}=1$ and dropped all the c's out, so we have
(1)

$$
\begin{gathered}
t=\beta(\tau+v \xi) \\
x=\beta(\xi+v \tau) \\
\tau=\beta(t-v x) \\
\xi=\beta(x-v t)
\end{gathered}
$$

and, of course,
(2)

$$
\begin{aligned}
& \eta=y \\
& \zeta=z
\end{aligned}
$$

The equation we're transforming is
(3) $\frac{\partial Y}{\partial t}=\frac{\partial L}{\partial z}-\frac{\partial N}{\partial x}$

Applying (1) to $\frac{\partial Y}{\partial \tau}$ we have
(4) $\frac{\partial Y}{\partial \tau}=\beta\left[\frac{\partial Y}{\partial t}+v \frac{\partial Y}{\partial x}\right]$

Plugging (3) into (4) we obtain:
(5) $\frac{\partial Y}{\partial \tau}=\beta\left[\frac{\partial L}{\partial z}-\frac{\partial N}{\partial x}+v \frac{\partial Y}{\partial x}\right]$

Now we rewrite the partial of N by x in the Greek coordinates using the chain rule, and we rewrite the partial of Y by x in the Greek coordinates using the chain rule:
(6)

$$
\begin{aligned}
& \frac{\partial N}{\partial x}=\beta\left[-v \frac{\partial N}{\partial t}+\frac{\partial N}{\partial \xi}\right] \\
& \frac{\partial Y}{\partial x}=\beta\left[-v \frac{\partial Y}{\partial \tau}+\frac{\partial Y}{\partial \xi}\right]
\end{aligned}
$$

And we plug (6) into (5) to obtain:
(7) $\frac{\partial Y}{\partial \tau}=\beta\left[\frac{\partial L}{\partial z}+v \beta \frac{\partial N}{\partial \tau}-\beta \frac{\partial N}{\partial \xi}-v^{2} \beta \frac{\partial Y}{\partial \tau}+v \beta \frac{\partial Y}{\partial \xi}\right]$

Next we multiply through by 1/beta, and then collect all the @Y/@tau and @N/@tau terms and move them to the left:
(8) $\left(\frac{1}{\beta}+v^{2} \beta\right) \frac{\partial Y}{\partial \tau}-v \beta \frac{\partial N}{\partial \tau}=\frac{\partial L}{\partial z}-\beta \frac{\partial N}{\partial \xi}+v \beta \frac{\partial Y}{\partial \xi}$

With a little fiddling we realize that
(9) $\frac{1}{\beta}+v^{2} \beta=\beta$
so, plugging (9) into (8) and rearranging a little, and replacing \mathbf{z} with zeta, we obtain

$$
\beta \frac{\partial}{\partial \tau}(Y-v N)=\frac{\partial L}{\partial \zeta}-\beta \frac{\partial}{\partial \xi}(N-v Y)
$$

which looks great, except that we have somehow contrived to swap zeta and xi. Either there is another step which allows you to actually swap them, or I made a mistake. I didn't spot the error in the course of transcribing it from paper but that certainly doesn't prove it's not there. :-(

Anyhow this is as far as I'm going on this; it's taking far too much time! I hope it was of some value.

