There's less here than meets the eye. He's not deriving much of anything; he's just finding the derivatives in the Greek coordinate system.

I'll work through the first equation he gives here. I haven't done the rest but I think they follow similarly. It's a mess, but all we're doing is applying the chain rule a few times and plugging in Maxwell's equations in the Latin frame in order to get the derivatives of the Latin (unprimed) functions $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{L}, \mathrm{N}, \mathrm{M}$ in terms of the Greek coordinates.

First we have the X component of the partial of the E field:
(1) $\frac{1}{c} \frac{\partial x}{\partial t}=\frac{\partial N}{\partial y}-\frac{\partial M}{\partial z}$

And we'll need an equation Einstein didn't bother to write down right here, which is the divergence of the E field:

$$
\text { (2) } \begin{gathered}
\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z}=0 \\
\frac{\partial X}{\partial x}=-\left[\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z}\right]
\end{gathered}
$$

And we have the transforms between the Latin and Greek frames:

$$
\text { (3) } \begin{aligned}
\quad x & =\beta\left(\tau+\frac{v}{c} \xi\right) \\
y & =\eta \\
z & =\zeta \\
\text { (4) } \quad \tau & =\beta\left(t-\frac{v}{c} \tau\right) \\
\quad \xi & =\beta\left(x-\frac{v}{c} t\right)
\end{aligned}
$$

Now let's write the partial derivative of X with respect to tau (this has nothing to do with Maxwell's equations; this would be true for any function X):
(5) $\frac{\partial X}{\partial \tau}=\frac{\partial X}{\partial t} \frac{\partial t}{\partial \tau}+\frac{\partial X}{\partial x} \frac{\partial x}{\partial \tau}+\frac{\partial X}{\partial y} \frac{\partial y}{\partial \tau}+\frac{\partial X}{\partial z} \frac{\partial z}{\partial \tau}$

From the transformations (3) given above, we have

$$
\begin{gather*}
\frac{\partial t}{\partial \tau}=\beta \\
\frac{\partial x}{\partial \tau}=\beta \frac{v}{c} \tag{6}\\
\frac{\partial y}{\partial \tau}=\frac{\partial z}{\partial \tau}=0
\end{gather*}
$$

Plugging (6) into (5) and dropping out the zero terms, we have

$$
\text { (7) } \frac{\partial X}{\partial \tau}=\beta\left[\frac{\partial X}{\partial t}+\frac{v}{c} \frac{\partial X}{\partial x}\right]
$$

Now we substitute (1) and (2) into (7), multiply both sides by " $1 / \mathrm{c}$ ", and replace " y " and " z " with eta and zeta, to obtain

$$
\frac{1}{c} \frac{\partial X}{\partial \tau}=\beta\left[\frac{\partial N}{\partial \eta}-\frac{\partial M}{\partial \zeta}-\frac{v}{c^{2}}\left(\frac{\partial Y}{\partial \eta}+\frac{\partial Z}{\partial \zeta}\right)\right]
$$

which, with a little rearranging, is the first of the transformed equations Einstein gives,

$$
\frac{1}{c} \frac{\partial X}{\partial \tau}=\frac{\partial}{\partial \eta}\left[\beta\left(N-\frac{v}{c} Y\right)\right]-\frac{\partial}{\partial \zeta}\left[\beta\left(M+\frac{v}{c} Z\right)\right]
$$

except that, as usual, I messed up a factor of "c" someplace. (I much prefer to set $\mathrm{c}=1$; then it doesn't matter if I blow a constant multiple of "c" somewhere...)

As I said, I think the rest of the them follow the same way but I haven't worked them all through in this detail.

